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PREFACE

This report is written primarily for the record of the Explosives Research
Section prior to the author's separation from the Army. It is a companion report
to one entitled ""Steady-State Conditions In An Explosive Which Is Subjected Exter-
nally to Elevated Temperatures. ' This report contains a longer-than-usual ab-
stract, which summarizes the author's findings and feelings on the time-to-ex-
plosicn problem, followed by a somewhat detailed description of the same matter.
The author recommends the abstract to all readers, and the body of the report to
those inspired by the abstract and to anyone who might take up this subject. For
anyone beginning such a study or continuing this one, this report could save months
of time.

The report concerns lead azide throughout; however, the calculations and
observations are general and may be applied to other explosives.

A large share of the detailed computational work which forms the background

for this report was performed by Peter McIntyre, Co-operative Student, University
of Detroit. Much credit is due him for his diligence and perseverance.

Fred P. Stein
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ABSTRACT

The most important knowledge required in the calculation of time to explosion
for an explosive subjected to an elevated temperature is the kinetics of thermal
decomposition of the explosive. This study of models used in computing times to
explosion showed that activation energy, frequency factor, type of kinetic express-
ion, and their interrelationships transcend in importance all other physical and
chemical properties of the explosive.

Two mathematical models which describe heat conduction in an explosive
accompanied by simultaneous internal generation of heat from thermal decomposi-
tion of the explosive were studied. The boundary and initial conditions for one
model were such that an infinite slab of explosive of finite thickness, initially at a
constant temperature, was suddenly exposed to a constant temperature on its lower
surface while its upper surface was perfectly insulated. Zinn and Mader's corre-
lation of the solutions to this problem (Ref 8) was used in the study of this model.
The other model was that of a semi-infinite solid initially at a constant temperature
which suddenly has its surface exposed to an elevated constant temperature.

G.B. Cook's correlation of the solutions to this model (Ref 2) was studied. Both
models used zero-order kinetics to describe predetonation decomposition.

The effect of each physical and chemical property considered in the correlations
to have a bearing on the computed time to explosion at a given temperature was
studied. The results, in capsule form, are:

1. Heat of explosion and frequency factor. These two properties always appear
in the same position in the correlations so that each has exactly the same effect. As
might be expected intuitively, an increase in the heat-of-explosion value (or fre-
quency factor) results in a decrease in the computed time to explosion. In the Cook
correlation, the correspondence is exactly one to one. That is to say, doubling the
heat-of -explosion value (or frequency factor) halves the time to explosion. In the
Zinn and Mader correlation the result is essentially the same, although not pre~-

cisely so.

2, Density and thermal conductivity. These two properties do not appear in the
Cook correlation; however, in the Zinn and Mader correlation they always occupy
reciprocal positions in relation to one another, so that, for example, doubling
density is the same as halving thermal conductivity. At high environmental tem-
peratures, such as 360°C for lead azide or 260°C for RDX, these variables have
almost no effect on the computed time to explosion even for order-of-magnitude
changes. However, at temperatures near the computed minimum temperature of
explosion, the effects become large. Here, an increase in the density value (which
corresponds to a decrease in thermal conductivity) increases the computed time to

explosion.

3. Activation energy and frequency factor. It is realized that, in the zero-
order kinetic equations which are used in the differential equation, changes in the
activation energy value will tend to be compensated by simultaneous changes in the
frequency factor value if (and only if) the kinetic parameters are derived from
adequate thermal decomposition data. Since values for activation energy and fre-
quency factor are so often chosen from independent sources, both properties were
studied independently, as well as together. It was found that computed times to
explosion are extremely sensitive to activation energy. A 2% increase in the activa-
tion energy value results in a doubling of the computed time to explosion. It was
learned that, if one increases the activation energy value for lead azide by 10% and
then takes into consideration the compensating value of the frequency factor, the
computed time to explosion is increased by a factor of two in spite of the compen-
sating effect.




4. Initial temperature of explosive. This effect is not strong. For example,
a 20 C increase in the iuitial temperature would reduce the computed time to ex-
plosion by about 107 .

Comparisons were mwade between computed times to explosion for lead azide
and those observed experimentally in an apparatus which was described, hopefully,
by the mathematical models. The times to explosion computed from both the Zinn
and Mader and the Cook correlations were unsatisfactory. Both gave times which
were tou shorl.  Although the Zinn and Mader results were slightly better, the dif-
ference was not of great significance. When plotted in the familiar form of log-
arithm of time-to-explosion versus reciprocal temperature, the slopes of the com-
puted lines were much less than those of the experimental data.

In view of the Bmportance of the kinetic parameters, the values for activation
energy and frequency fuctor required to force the computed line through the lead
azide data for delonations in 0. 4-nmicron air pressures were determined. An acti-
vation eneruy of 69,750 cal per yram mole and a frequency of 10°1*7* sec™?
were lound to permit a perfect fit of the alorementioned experimental data. These
values are not thought to be very significant; however, it is of interesl to compare
them with 36, 300 and 10°* 7, respectively, which were determined from the decay
portion of the thermal decomposition data (Ref 4).

In an effort to account for a difference of approximately a factor of twenty in
the experimentally observed time to explosion for detonations of lead azide in high
vacuum and in a helium atmosphere, computalions were made with different values
of the thermal conductivity of the explosive (actually, the two-phase explosive/gas
system). These changes in thermal conductivity resulted in a trend in the computed
times lo explosion which was correct. That is to say, the thermal conductivity
which represented the lead aczide/helium system resulted in the shortest time to
explosion, as was observed experimentally, However, close observation was re-
quired to see the trend because it was not nearly strong enough to describe the ob-
served data in spite of the fact thar thermal conductivity values were changed as
much as four orders of mavnitude in an elfort to describe the best transfer in vac-
aui doe dn helium atisosphere.

A comparison was made for lead azide at 210 C and 246" C among

1. The rate of reaction given by the kinetie parameters used in the com-
putations of time to esplesion,

2. Toe mitial vade of reaction which was observed experimentally, and

3. The rate o reaction given by the Kkinetic parameters which permitted
@ foree Jit ol the data. "The rates of reaction used in the time-to-explosion com-
putations, when calculated at 210 C and 2467 C, were 35-50 times greater than the
estimated initial rates of reaction obtained from thermal decomposition data. On
the other hamd, however, the estimated initial experimental rates for the same
temperatures were 230-175 times as great as the rates which permutted a force fit
ol explosion data.

The hewt-up characteristies of Tead azide, 1l it were inert, were determined for
the sanee mathenwaacal oodel and parimeters s were used to compute times b
expiosan. The deadazide was presanied to ave nointernal eat generation it any
teeperdture, AL 30 0 where the observod Thne toesplosion moa nitrogen atmos-
pheve was 24 seconas, el et dedad azide was all at essentially 350 C al that
ties furthermore, o pact of the i mert” lead azade was below 330 C from the 5-
second te te e 24 second tanes A 420 C (where the experimental time to ex-
oston s 00707 second)s only aboat 200 of the it mert” lead azide had been heated
HUalc above s ! tomperature of 3O Co Only the sartace was at 420 C, and the
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temperature sloped off rapidly to 30°C. These findings would indicate that in the
experiment either considerable heating occurred by a radiative mechanism that is
not accounted for in the calculations by the thermal conductivity term, or that
whatever of importance that occurred happened very near to the surface of the ex-
plosive which contacted the elevated temperature.

INTRODUCTION

When an explosive is subjected to a temperature high enough to cause it to ex-
plode, it is logical to ask how much time will elapse between the application of the
heat source and the detonation of the explosive. Calculations of this time to ex-
plosion can be made by considering heat conduction in the explosive in combination
with the simultaneous, internal h~at generation resulting from thermal decomposi-
tion of the explosive. Further, the environment of the explosive must be consid-
ered; the surroundings can markedly affect the time to explosion.

The differential equation which describes heat conduction and simultaneous,
internal heat generation in an elemental volume of explosive is given in Equation 1.
(Please notice the list of symbols in the latter part of the report. ) ’

2
-k(m oT 3—T> + pc AT . pQ (rate of reaction) (1)
X 3X ax® At

"m" is a factor which depends on the geometry under consideration. That is

m = 0 for an infinite slab with planar isotherms, m =.1 for an infinitely

long cylinder with cylindrical isotherms, and m' = 2 for a sphere with spherical
isotherms. Of principal interest here is the case of m = 0, which is depicted in
Figure 1 below.

ENVIRONMENT x =0

X = a

T80T SIERCE 7777777,

Fig. 1. Infinite slab ol explosive on hot surface

Equation 1 rewritten for this case becomes

2
2T, pc 2T pQ (rate of reaction) (2)
Ax® “t

The problem is not completely defined until boundary and initial conditions
are given and, in this case, until an expression is given for the rate of reaction. In
the cases studied, the rate of reaction was always written as a zero-order, Ar-
rhenius-type equation,




Rate of reaction = Ze'E/RT (3)

When a rate expression which contains reciprocal temperature in an exponent, such
as Equation 3, is introduced into Equation 2, the differential equation becomes
strongly nonlinear with the result that no analytical solution is obtainable., Con-
sequently, it is necessary to resort to machine solutions to Equations 2 and 3.

Each set of initial and boundary conditions specified results in a new problem.
Two different sets of conditions are considered in this report.

The initial and boundary conditions for the case depicted in Figure 1 are

T (0, x) = T a>x>-a (4)
T {t, £a) = Tw t >0. (5)

These conditions lead to symmetrical heating of the explosive, for which one can
visualize two models. One can visualize a slab of twice the thickness shown in
Figure 1 with hot surfaces suddenly applied to both faces, or one can visualize the
slab as shown in Figure 1 with the upper face perfectly insulated from iis environ-
ment, the perfectinsulation being an outgrowth of the symmetry of the proble 2.
Such a condition might be approximated if the "environment' shown in Figure 1 were¢
a vacuum. Zinn and Mader (Ref 8) reported a usable correlation of solutions for
this set of boundary and initial conditions; that is to say, the article did not contain
solutions to Equations ( 2 through 5), but rather a correlation for time to explosion,
which was derived from many solutions of the differential equation. Their correla-
tion is used extensively and studied in detail in this report. It is

_ peaf E E )
te = "=— F (= - = 6
A (Tn Tw (6)
where F . g‘—)l% a function developed by Zinn and Mader to describe the cor-

T T/ . )
relation in compact fashion, and T, is the minimum temperature of explosion to be
calculated from

T. - E . (1)
2,303 R log RQ%a"E
XRTZ6

This equation is considered in detail in a previous repr by the author (Ref 7).

The explosive can also be considered as a semi-infinite solid. In Figure 1,
this consideration is equivalent to moving the x = 0 plane infinitely far above the
hot surface. The initial and boundary conditions are

T(0, x) = T, x ~0 (8)
T, 0) = Tus t ~90 (9)
T(t, =) =T, t >0 (10)




This approach is accompanied by the argument that anything of importance
happening prior to the explosion occurs near the surface of the hot plate, and

it occurs so rapidly that the explosion does not know or care about its surface
which communicates with the environment. G.B. Cook (Ref 2) reported a

usable correlation of solutions to this problem, Eqg. 2, 3, 8, 9, and 10. He gives
only sparse details of the correlating procedure, but he certainly had to solve the
differential equation a number of times, define the explosion condition, and then
correlate the resulting times to explosion. Cook's correlation is

14
t, = CE107 -|c] g10° BLo 4 p (11)
RQZ E
log c|= 0.4305E _ 14 43 (12)
RTw»
log D = LA68E 4y 4 (13)
RTHP

This correlation is considered in this report but not in as much detail as the Zinn
and Mader correlation, primarily because Cook's correlation is lacking in some
important properties. For example, thermal conductivity does not appear at all in
his correlation.

Both of these correlations apply to explosives in general, although it is to be
pointed out that no provision is made for latent heat of a phase change (say melting).
However, this report deals almost entirely with lead azide because that was the ex-
plosive under study. Lead azide explodes before melting.

Given these correlations, one must still have numerical values for the prop-
erties of the explosive required in the correlation before a numerical value can be
obtained for the time to explosion at a particular temperature. Getting values for
the properties which can be used with confidence is a difficult task. A list of such
values ?lgef 6), currently thought to be the best available for lead azide, has been
prepared for use in the Explosives Research Section.

Much of this report is directed toward answering the question: ""Which of the
properties required by the correlations are really of importance in calculating time
to explosion ?" Or, to state the question more quantitatively, "How much does each
parameter affect calculated time to explosion ?'' Answers to this question point out
areas where additional research is required and also, on the other hand, areas
where currently available theories and data seem adequate.

EFFECT OF HEAT OF EXPLOSION, Q, AND FREQUENCY FACTOR, Z

It can easily be observed in both Zinn and Mader's and in Cook's (Ref 2) re-
sults that Q and Z appear only once, and that, furthermore, they always appear
side by side, so that the relationship N Q = NZ holds. In other words, doubling Q
is the same as doubling Z.

Intuition tells one that the greater the heat of reaction, Q, the shorter should
be the delay time for a given hot-plate temperature because more heat is given off
per unit of explosive decomposed, and hence the temperature rises more rapidly.

Inspection of Cook's results reveals that Q has a one-to-one effect on explo-
sion time. Doubling Q will half t,, the explosion time.
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The effect is not quite so straightforward in Zinn and Mader's results; however, the
effect is not too complicated, since Q (and Z) appear only once. Figure 2 shows the
effect of varying @, and Figure 3 shows the effect of varying Z. It can be observed
from these figures that the effect is essentially one-to-one.

It can be further observed, from Figure 2, that a large increase in Q will re-
sult in a relatively small decrease in the minimum temperature of explosion but will
result in a relatively large decrease in the explosion time. To emphasize: An in-
crease in Q from 399 cal/g to 800 cal/g will decrease the minimum temperature of
explosion only from 201°C to 192°C but, at a hot-plate temperature of 340°C, the
explosion time is decreased from 4. 8 sec to 2.4 sec, a 50% reduction.

It is recognized that, if kinetic data are derived from thermal decomposition
experiments, the frequency factor, Z, is dependent upon activation energy and that
changes in Z cannot be considered independently of activation energy. This inter-
dependence is discussed more fully in a subsequent section entitled '"Effect of Si-
multaneous Changes in Activation Energy and Frequency Factor.' The analysis shown
in Figure 3 concerning independent changes in Z was made because more often than
not kinetic parameters are not taken from consistent thermal decomposition data;
often 2's are selected by taking a "typical value' for explosives, like 10*% sec™?,
which is not based on any particular thermal decomposition experiment.

Computations were made for RDX as well as for lead azide. The analysis for
heat of explosion of RDX uncovered the following interesting item:

Zinn and Mader (Ref 8) point out the fine compilation of physical properties of
explosives to be found in Picatinny Arsenal Technical Report {PATR) 1740. They
proceed to use each value for RDX in that report until they come to Q. They then
say that many explosives exhibit a heat of reaction of 500 cal/g. Using PATR 1740
values plus 500 cal/g for Q, they calculate explosion times as shown in Figure 4.
Excellent agreement is observed. However, PATR 1740 gives a value of 1280 cal/g
for RDX. (This value has been independently rechecked and is believed to be ac-
curate.) The line calculated using this value of Q is also shown in Figure 4. Agree-
ment is not nearly so good, as all predicted explosion times are too short. It is
interesting to speculate as to why not all PATR 1740 numbers were used.

EFFECT OF DENSITY, p, AND THERMAL CONDUCTIVITY, A

There is no intuitively obvious effect of density or thermal conductivity on time
to explosion.

Inspection of Cook's results (Ref 2) reveals no appearance of either p or A, from
which one should assume there is no effect of either variable on the time to ex-
plosion. It is possible that these terms are hidden in the constant terms 10**, 10%,
0.4305, etc., because Cook states in this article (or in some other article of his)
that he assumes A =7 x 107 cal/cm sec”K for all explosives. Such an explanation,
however, involves some sort of paradox, because he also assumes that ¢ = 0.35
cal/g” K for all explosives and yet ¢ appears to the [irst power in the explosion time
expression, It is possible that ¢ was inserted as itself and not in a constant in order
to emphasize the dimensional correctness of the equation.

Both p and A appear twice in the Zinn and Mader (Ref 8) results; therefore, one
would expect the effects of these variables to be complicated and not immediately
obvious. One can also observe that in both appearances the variables take the form

p/X; hence, it should be noted that o e X In other words, doubling the density

by
has the same effect as halving the thermai conductivity.




FiLgures 5 and 6 show the computed effect of p and A. At high temperatures, such
as 400°C, the effects of p and A are very slight and for all practical purposes non-
existent. At the low-temperature end.of Figures 5 and 6, near the minimum tem-
perature of explosion, the effects of p and A are quite pronounced. It is clear that,
at the low-temperature end, an increase in p causes an increase in te and conversely,
that an increase in A causes a decrease in tg.

This latter statement backs up an experimental result obtained by James E. Abel
(Ref 1) of the Explosives Research Section while exploding lead azide on a hot plate
in different atmospheres, and it also confirms the qualitative explanation used to
back up .he experiment. At a given hot-plate temperature, explosion times were
shortest in a helium atmosphere, somewhat longer in a nitrogen atmosphere, still
longer in air at 4 microns pressure, and longest in air at 0.4 micron pressure.
These differences in experimentally observed explosion times at a given temperature
were definitely significantly different from one another. From helium atmosphere
to air at 0.4 micron pressure, the times differed by a factor of roughly twenty. The
qualitative explanation thus backed up by the calculations is that, to get a shorter
explosion time, one must pump heat into the relatively cold (when it first hits the
hot plate) lead azide as rapidly as possible. This feat is best accomplished when
the surrounding atmosphere has the highest thermal conductivity; this would be He,
among the atmospheres used. The effects of helium are three: (1) the surrounding
atmosphere is warmer due to heat conducted away from the hot plate, (2) the heat-
transfer coefficient between the lead azide and the surroundings is higher, and (3)
the effective thermal conductivity of the two-phase explosive (lead azide and the gas
in the interstices) is higher. All three effects favor faster heating of the lead azide.

Since the variables Q, Z. a (radius of cylinder), and p appear in the same po-
sition in the minimum-temperature~of-explosion € uation, Equation 7, they all have
the effect of lowering the minimum temperature of explosion as they are increased.
The thermal conductivity, being in a reciprocal position with respect to the above-
named variables, has the effect of raising the minimum temperature of explosion as
it is increased. This observation is contrary to the results of the aforementioned
experiments of James E. Abel, where the minimum temperature of explosion in a
helium atmosphere was 341°C, in a nitrogen atmosphere 345°C, and in 4-micron
air pressure 355°C. It is also contrary to the alorementioned qualitative explana-
tion used to explain the shortness of explosion times in a helium atmosphere in
terms of the mechanism of pumping in the most heat in the shortest time.

In accordance with the aforementioned qualitative theory, one should simply be
able to say that, at some low temperaturc when the atmosphere was helium, enough
heat could be pumped in to set off the lead azide whereas, at that same low tem-
perature, not enough heat could be pumped into the lead azide to explode it if the
atmosphere were low-pressure air. Hence, hel 2m permits explosion at a lower
temperature. This qualitative explanation is in accordance with the experimental
data of James E. Abel but at variance with the calculations being investigated here.

On the other hand, the calculations being investigated here support on this point
the erroneous theory advanced, before the experiments were run, to explain that the
shortest explosion times should be accomplished under vacuum. When subsequent
experiments showed e shortest explosion times to be under a helium atmosphere
and the longest to be under vacuum conditions, this theory had to be discarded.

This "discarded, wrong" theory said that when the surrounding atmosphere had a
high thermal conductivity, as does helium, the lead azide would be cooled most;
hence, the explosive could stand higher temperatures under the better cooling
conditions.

If the experimental curves actually crossed one another, it could be reasonably
argued that both theories—the cooling theory for low temperatures near the
minimum temperature of explosion, and the pumping-in-heat theory at the higher
temperatures—were correct.




The points of inflection at the low-temperature end of the curve for A = 1.55
x 107 (Fig. 6) result from the points of inflection in Zinn and Mader's correlating
function F, at values of the abscissa near zero, Furthermore, at the low-temper-
ature end, the temperatures are nearing those of the minimum temperature of ex-
plosion; hence, the time values must shoot up very rapidly in this region. All
curves in Figures 5 and 6 would exhibit the inflection points shown in Figure 6 if
they were extended far enough toward their minimum temperature of explosion.

It is not to be assumed from the previous section or {rom this section that a
small change in the minimum temperature of explosion always means a correspond-
ing large change in explosion time. Witness the temperature region in Figure 5
near 400°C, where each density line means a different minimum temperature of
explosion, yet each line barely represents a different explosion time.

EFFECT OF SIMULTANEOUS CHANGES IN ACTIVATION
ENERGY AND FREQUENCY FACTOR

It has been the custom in explosives technology to take an activation energy from
one source, any source, and combine it with an assumed frequency factor or one
commonly used for other materials of the same class as the material in question,
Accordingly, when the RDX study was made, the effects of activation energy and
frequency factor were considered separately although it was recoguized that they
were interrelated.

The effect of activation energy is not obvious in either Zinn and Mader's (Ref 8)
or Cook's (Ref 2) results because E appears in many places.

Figure 7 shows the results of the calculations for a one-inch slab of RDX with
various activation energies. It is immediately apparent that an increase in the
activation energy increases the explosion time at any given hot-plate temperature.
Furthermore, the minimum temperature of explosion is also increased with a
larger E. Quantitative inspection of Figure 7 shows that a 2% increase in E will at
least double the explosion time. In view of the accuracies of "experimental' acti-
vation energies, this observation is so severely incriminating for the calculation
method being investigated here that these computations were double checked for
accuracy. There are no computational errors.

The computations performed with Cook's results are also shown in Figure 7.
For values of E less than 47,500 cal/g mole, explosion times calculated from Zinn
and Mader are greater than those calculated from Cook. As the value of E in-
creases, the explosion times as calculated from Zinn and Mader become closer to
those of Cook. For values of E greater than 57,000 cal/g mole, explosion times
calculated from Zinn and Mader are shorter than those calculated from Cook.
Hence, at a value of E somewhere between 47,500 and 57,000 cal/g mole, the ex-
plosion times of both authors will be identical.

In any event, for both correlations, the dominating term in the solvtions is the
activation energy, E.

If one considers zero-order kinetics, as is often done, the decomposition
equation is

da | gemr v (14)

From this equation it can be scen that, if both E and Z increase (or decrease), the
individual effects will tend to counteract one another.




The study was carried out by making simultaneous changes of E and Z which are
exactly consistent. The results are shown in Figure 8. The reference line for the
plot of the logarithm or rate versus 1/T was taken to be the one described by E =
36,300 cal/g and Z = 10" sec™', this line was then rotated about the temperature
point of 224°C, which is about the midpoint of the range of Jach's experimental data
from which E and Z were obtained. The line was rotated so as to change its slope,

‘and hence E, by 27 and 10%. The corresponding intercepts at 1/T = 0, the fre-

quency factors, were then determined. Thus, on this basis of consistent sets of E
and Z, the analysis proceded. Near the reference line in the center, Figure 8 shows,
for example, one line that represents an increase of 2 in E with no change in Z.
(This is the same analysis as was done for RDX.) It can be seen that this change in
E alone results in almost doubling the calculated time to explosion at a given tem-
perature. Now, also showi on Figure 8 is a line which represents the same 2% in-
crease in E, but also includes an exactly compensating change in Z to 10*%* 2% sec™?,
It can be seen that the resultant change in calculated time to explosion is compen-
sated for; in fact, itisovercorrected, for now there is about a 10% decrease in the
calculated time to explosion at a given temperature, Similar arguments obtain for
all of the other changes shown in the key of Figure 8.

One may not miss the "correct' activation energy by 10%, for example which
does not appear from previous experience to be difficult), and then hope to have all
of the problems resolved by a compensating change in frequency factor because, as
Figure 8 shows, such explosion times will be different by about a factor of two.
Furthermore, the greater the interval between the highest temperature at which de-
composition data is obtained and the temperature at which the explosion time is cal-
culated, the more the calculated explosion times will be in error for a given error
in E and its compensating change in Z. In other words, the further one has to ex-
trapolate the kinetic data, the more important it is to have exactly the correct kinet-
ic expression.

EFFECT OF INITIAL TEMPERATURE OF THE EXPLOSIVE, T.

The effect of initial temperature became of interest in connection with James
Abel's (Ref 1) experimental work hecause the lead azide in the storage hopper in
his apparatus was heated somewhat above room temperature hefore it was dropped
on the hot plate. One would expect explosion times to be shortened if the explosive
hits the hot plate at a higher temperature because it has a start on the heating pro-
cess. Furthermore, in the case of lead azide the possibility of a partial decomposi-
tion with the subsequent formation of self-catalyzing lead atoms would lead to shorter
explosion times. When it was learned that the lead azide in the hopper was at tem-
peratures of 50-70°C, this decomposition and sell-calalysis elfect was ruled out on
the basis that no significant reaction would occur at such low temperatures.

Various initial temperatures were investigated for RDX using Cook's (Rel 2)
correlation. The resulls are shown in Figure 9. Cook’s correlation was chosen
over Zinn and Mader's (Refl 8) for this calculation because the computations are less
difficult. Zinn and Mader do discuss different initial temperatures, but for a
spherical geometry only.

Figure 9 reveals that a 20 C increase in initial temperature decreases the ex-
plosion time by about 10'.

COMPARISON OF CALCULATIONS WITH EXPERIMENTAL DATA

One of the primary goals of this study was to be able to make successful pre-
dictions of explosion time as a function of temperiature. To evaluate the effective-
ness of the calculations, the results were compared to the available experimental
data, those of James Abel (Refl 1) from his "vacuum-ignition-timer" studies.




A comparison between predictions and some experimental data is shown in
Figure 10. The data for detonations of the lead azide in nitrogen at atmospheric
pressure are represented by a line. Many experimental points scatter about this
line. For the purposes of this discussion, the data, as represented by this line, are
"truth. " Also shown are the vulues computed from the Zinn and Mader (Ref 8) cor-
relation and those computed from Cook (Ref 2). It is difficult to choose which cor-
relation better describes the data. The Cook correlation has the advantage of not
curving down away from the data at the lower temperatures. In neither case is the
slope of the line great enough.

Since the kinetic parameters produce by far the greatest changes in the com-
puted explosion times, it is of interest and natural to ask what values for the kinetic
parameters are needed to fit the experimental data. Figure 10 shows, among other
things, the line which may be forced through the data with the Cook correlation if
the kinetic parameters are allowed to take on any desired values. It coincides with
the line representing%the data for most of the range. The values of E = 73,500 cal/g
mole and Z = 10°** **sec™* were obtained by trial and error. The "best' line that
can be forced through the data with the Zinn and Mader correlation is also shown in
Figure 10. It is not as good as the forced fit with the Cook correlation at the low-
temperature end of the range where it curves down away from the data. In order to
obtain the kinetic parameters of 77,600 cal/g mole and 10 *®sec™®, which were
used in the fit, the Zinn and Mader correlating function, F, was forced into a straight
line. The function is essentially a straight line over most of its range, and this
straight portion was merely extended in both directions.

The Zinn and Mader model, in the sense used here with the top surface of the
slab considered to be perfectly insulated, would be expected to best describe the
experimental data taken under conditions of high vacuum, which, of course, presents
good insulation. Accordingly, the analysis shown in Figure 11 was undertaken. The
dashed lines represent the data taken by James Abel for detonations of lead azide in
atmospheres of HE (1 atm pressure), N (1 atm pressure), air (4 microns pres-
sure), and air (0.4 micron pressure). Again, the line calculated directly from
Cook's correlation is shown. The line from the Zinn and Mader model is also
shown; however, it differs from the one shown previously in Figure 10 in that a
thermal conductivity of 2.51 x 10~* cal/sec ecm’K, which is supposed to corre-
spond to the fine lead azide powder in high vacuum, was used. The low thermal
conductivities make for low minimum temperatures of explosion and, as a result,
the calculated line is quite siraight in the range covered by these experiments and
does not curve down away {rom the data at the low-temperature end. The Zinn
and Mader correlation gives results which are nearer to the experimental data
than those of Cook; however, neither is salisfactory, and both have the same
incorrect slope, which is not nearly great enough.

The line in Figure 11, which is coincident with the line representing the data
for 0. 4-micron air, is the one which was forced through the data using the Zinn and
Mader correlation with adjustable kinetic parameters. The paramelers producing
this perfect fit are E = 69,750 cal g mole and Z = 10*** “sec ™,

Figure 12 is an extension of the analysis begun in Figure 11. Again the four
data lines are shown along with the forced-{it line through the data for 0.4-micron
air. For the remainder of the analysis, the parameters of E = 69,750 and 2 =
10°**7% were retained and the thermal conductivity was varied from 2,51 x 10~
t02.08 x 1077 10 0.945 x 107* to 4.11 x 107" cal/sec cm C in order to try to account
for the variations in experimental data observed among vacuum, nitrogen, and helium
atmospheres. These results are shown in Figure 12, It is to be observed that the
trend is correct, but that it is not nearly strong enough. That is to say, the change
in the values for thermal conductivity from high vacuum to helium atmosphere pro-
duces calculated explosion times which go from longer to shorter as do the experi-
mental data, but the difference in these computed times is not great in view of the
four -orders-of-magnitude change in the thermal cor wetivities used. Also, at the
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low-temperature end of the range, the lines representing the higher thermal con-
ductivities, which produce the higher minimum temperatures of explosion, spread
quite a bit, as do all o! the computations {rom the Zinn and Mader correlation. In
fact, the lines for the two largest thermal conductivities would cross one another

at 355°C when the one heads toward infinity.

COMPARISON OF "FORCED-FIT" KINETICS AND EXPERIMENTALLY OBSERVED
KINETICS

Since kinetic parameters have the strongest effect on the calculated times to
explosion, it is logical to ask how the parameters which force a fit through the data
compare with experimentally obtained thermal decompositions. Figure 13 shows
such a comparison. Consider first only the iines which are concerned with 210.6°C.
Near the bottom of the graph is the line representing Jach's experimental data for
210.6°C up to a decomposition of 40%. Jach has determined 36,300 cal/g to be the
activation energy and 10**“sec™" to be the frequency factor for the decay portions
of his sigmoid-shaped curves. If these parameters are employed in a zero-order
rate equation, as is done in both the Cook (Ref 2) and the Zinn and Mader (Ref 8)
correlations, one of the steepest lines on Figure 13 is obtained. If the order is
taken to be first, then the curve is obtained which has the same initial slope as the
zero order but at all later points exhibits a lesser rate. Both of these rates are
much greater than the observed initial rates. In fact, an inspection of Figure 13 as
it is drawn shows that the zero-order rate is approximately 50 times greater than
the experimentally observed initial rate of decomé)osition. If one uses the forced fit
kinetics of E = 69,750 cal/g mole and Z = 10°"*"*sec™® in a zero-order rate ex-
pression, the dashed line which nearly lies on the abscissa is obtained. At first
glance, one is teinpted to say that this rate is much nearer to the experimentally
observed initial rate than is the aforementioned rate. However, again {rom the
figure, the observed initial rate seems to be about 475 times greater than the zero-
order rate obtained from forced-lit kinetic parameters. In any event, the rate
which has been used is far too great, and the forced-fit rate seems to be much less
than the observed rate.

The other lines on Figure 13, which are for 246.0°C, reveal much the same
story. Jach's data line shows the observed decomposition for 246.0°C. It can be
seen that the slope of the zero-order rate kinetic expression is far too great to de-
scribe the initial rate. This zero-order rate, however, would be a rather good
description of the rate when about 35% of the material had decomposed. Of course,
beyond that amount of material the zero-order rate is again always too great be-
cause it does not recede to zero when all of the material is consumed. The first-
order expression is also shown. It is not much better than the zero-order one in
the important early stages of decomposition. Here, the zero-order rate, from the
graph, is about 35 times as great as the observed initial rate. The result of the
forced-fit parameters used in the zero-order form is shown by the dashed line
which is nearly on the abscissa. From the graph it appears to be about 1/230th of
the observed initial rate. Again a rate which is much too great was used and ap-
parently the forced-fil rate which does work is, for the zero-order form, much less
than the observed initial rate. ) .

Figure 13 shows that, for both temperatures, a rate which is quite in excess of
the observed initial rate has been used in calculations of times to explosion. From
this observation, one should he able to conclude that the predicted delay times should
be shorter than the measured times. This is indeed the case, as can be seen in
Figure 12. However, such is not the complete story, for the comparisons were made
at 210.6 and 246.0 C (246.0C is the maxi™um temperature at which Jach obtained
data) and the explosion data were obtained Hr hot-plate temperatures of about
340-440°C. The equation for thermal decomposition must thus be extrapolated ap-
proximately 200 C from 246°C to about 440 C. In this interval, it would ke pos-
sible for the relationship to reverse so that the "observed™ (if they could be observed
in practice) initia! rates would become greater than the zero-order rates. Such an
analysis is shown in Figure 14.
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Figure 14 shows rate ol reaction as a function of temperature. One line gives
the rate as determined by the zero-order expression which uses Jach's decay-period
values for E and Z. The other lme glves the same information for the forced fit E
of 69,750 cal/g mole and Z of 10°**7* sec™. Certainly, unless two rate expres-
sions have exactly the same activation energy, there will be some temperature at
which the rate curves will cross. At temperatures above this crossover temper-
ature, one reaction will be faster. For the two curves shown in Figure 14, this
temperature is about 480°C. Now, at lower temperatures as shown on Flgure 13,
the forced-fit kinetics give much slower rates of reaction; and, futhermore, the
observation recorded in the previous paragraph is conﬁrmed That is, calculated
explosion times are shorter than observed ones, but now thlS statement must be
qualified by adding the phrase, "at temper atures helow 480°C." Measurements were
not obtained for temperatures lnghel than 440°C. Since the forced-fit kinetics give
the correct explosmn time at all temperatures, it can be concluded from Figure 14
that, since the 480°C point is common to both hnes Jach's decay-period kinetics
would give the correct time to explosion at 480°C. Inspectlon of Figure 12 reveals
that the extrapolated Zinn and Mader curve seems to be headed for an intersection
with the extrapolated 0. 4-micron-air data line in the neighborhood of 480°C. Of
course, at temperatures greater than 480°C, the computed explosion times would
be longe1 than the observed ones.

HEAT-UP OF LEAD AZIDE IF INERT

Calculations were made of the heat-up characteristics of lead azide if inert
(internal heat generation considered to be zero) in an infinite slab 1.56 mm thick.
The solution to this problem, where the-infinite slab is initially at a uniform tem-
perature and where the surfaces are suddenly exposed to an elevated temperature
and maintained at that temperature, was taken from Ingersoll et al (Ref 3). Of
course, this model is exactly the one used by Zinn and Mader except that here
heat generated by slow thermal decomposition is considered to be zero. Such an
assumption leads to a simpler set of equations for which a fairly simple series
solution exists. The temperature/distance profiles f01 several times after the
exposure are shown for hot-plate temperatures of 350°, 385°, and 420°C in Figures
15, 16, and 17, respectively. In all of these models, the slab thickness was taken
to be 1.56 mm. It is interesting to notice the tempe1 ature profile for the time which
corresponds to the experimentally observed explosion time. At 350°C on the hot .
plate, this time is 24 seconds; Figure 15 shows that, even if the material were
inert, the entire slab would have been essentially at the hot-plate temperature at the
explosxon time. Further, from 5 to 24 seconds no part of the sample would be cooler
than 330°C. On the othe1 hand, at 420°C, where the time to explosxon is 0.0707
second, it can be seen in qure 17 that essentlallv none of the "if inert" lead
azide has reached the hot- phte temperature and only roughly 20% of the slab has
increased in temperature at all above the initial temperature of 30°C. In all of
these calcuhtxons the thermal conductivity of lead azide was taken to be 0.945 x
107% cal/sec cm® C, which is currently believed to be the best value available for
the azide powder in a nitrogen atmosphere; the bulk density was taken to be 0.54
g/cm®, which was observed in the photog,nphs, and the specific heat was taken to

be 0.116 cal/g"C

Figure 18 shows the results of a calculation like those described in the previous
paragraph except that the slah thickness was taken to be 1. 018 mm.

It is currently thought that a thermal ~onductivity of 2.51 x 107" cal,/sec cm’C
is descriptive of the lead azide powder in a high vacuum medium. Accordingly,
this value was used to compute the heat-up characteristics, with all other param-
eters remaining the same. The results are shown in Figure 19. Since such long
times are involved (in particular, since a period of 100 seconds would be required
to increase the temperature of roughly 207 of the material significantly above its
initial temperature), u)numed to the measured explosion time of onlv one second
for this temperature of 420°C in a vacuum of 0.4 micron one would be tempted to
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say that the heat transfer is much greater than can be accounted for by the thermal
c'onduct1v1ty yalue, and that apparently heat transfer occurs by radiation from par-
thl.e o particle. The only other possible explanation is that all of the significant
action occurs essentially on the surface of the explosive which is in contact with the .

hot surface.
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SYMBOLS
density of explosive, g/cm®
heat of reaction of explosive, cal/g
frequency factor in Arrhenius equation, sec™
activation energy, cal/g mole
universal gas constant, cal/g mole’ K
temperature in explosive at any time or position, °K
thermal conductivity of explosive, cal/cm sec®XK
specific keat of explosive, cal/g’K
time, sec
initial temperature of explosive, °K
hot-plate temperature, °K
minimum temperature of explosion at hot plate, °K
hall thickness of slab, or radius of cylinder or sphere, cm
geometric factor
function defined by Zinn and Mader (Ref 8)
explosion time, sec
distance, cm
constant
constant
constant

{raction decomposed
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Fig 15 Heat-up of lead azide if inert (infinite slab 1.56 wm thick). Experimen-

tally observed explosion time at 350°C in N, is 21 sec
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Fig 16 Heat-up of lead azide il inert (infinite slab 1.56 mm thick). Fxperinen-

tally observed explosion time at 385°C in \, is 1.1 sec
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Fig 17 Heat-up of lead azide if inert (infinite slab 1.56 mm thick). Experimen-

taliv observed explosion time at 420°C in N, is 0.0707 sec
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IFig 18 Heat-up of lead azide if inert (infinite slab 1.15 mm thick). Fxperimen-

tally observed explosion time at 380°C in N, is 1.0 sec
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